- Зачем нужен электромагнитный клапан? | смарт полив
- Конструкция и назначение пилотируемого клапана
- Конструкция клапана и его виды
- Первый запуск клапана
- Переделка клапана от стиральной машины на питание напряжением 12 вольт постоянного тока
- Подключение электромагнитного клапана к системе полива огорода
- Приступим к разборке
- Проверка клапана
- Соленоидный двигатель принцип работы
- Соленоидный двигатель своими руками
- Устройство соленоидного двигателя
- Шаровый с электроприводом,
Зачем нужен электромагнитный клапан? | смарт полив
Для начала рассмотрим две полезные фичи этого устройста.
Еще одной полезной функцией клапана является возможность ручного управления клапаном, посредством поворота соленоида на четверть оборота. Эта функция часто используется, когда необходимо оперативно открыть клапан без подачи электрического импульса, например при консервации системы автополива.
Также еще одной полезной функцией является регулировка скорости протока жидкости, пропускаемой через электромагнитный клапан. Не все клапана поддерживают эту функцию, но там где она есть — позволяет провести тонкую регулировку системы автополива.
Теперь подходим к самому главному — для чего он нужен в системе автополива?
- Автоматизация полива. Система полива без автоматизации по своей сути теряет смысл. Как легко управлять системой в автоматическом режиме? Конечно, это проще всего достигнуть с помощью управления клапанами посредством электрических импульсов. Подробнее о том, как устроена система автополива, читайте здесь. Если в системе полива нет автоматизации, то проще и дешевле вместо электромагнитных клапанов установить обычные шаровые краны.
- Полить участок малым объемом воды. Как известно, даже участок в 10-12 соток может легко за раз потребить 10-12 кубических метров воды. Естественно, не каждый владелец участка захочет устанавливать на участке 10 кубовую емкость. Также, представим какие размеры труб нужны для того, чтобы пропустить такой объем воды сквозь весь участок. Трубы большого размера нецелесообразно закапывать на участке и просто дорого. То есть в системе с большой емкостью, с большим диаметром труб чтобы за раз вылить 10 м3 на участок, смысла особого нет. Для чего на самом деле нужна емкость, смотрите здесь. Также нужно иметь ввиду, что далеко не каждый источник сможет выдать такой объем воды за раз. Поэтому логичнее устанавливать емкость меньшего объема и наполнять ее периодически и также периодически выполнять полив разных частей участка. Именно по этой причине участок делят на зоны полива и осуществляют орошение поочередно и в разные дни. Это позволяет существенно сократить затраты на монтаж системы и позволяет сделать ее более компактной и эффективной с точки зрения полива.
Таким образом, мы сейчас понимаем, что электромагнитный клапан — это обязательный атрибут автоматизированной системы полива. При этом системы автополива с такой концепцией разбиения на зоны способна осуществлять полив не только участки маленьких площадей, но и участки размером в несколько гектар.
Для грамотного проектирования и правильного расчета труб, разбиения на зоны полива, а также подбора всех элементов системы, обращайтесь к профессионалам в области автополива. Если Вы до сих пор сомневаетесь, нужна ли Вам система автополива или нет — прочитайте нашу статью про преимущества систем полива и взвесьте все за и против.
Оставить заявку на расчет системы можно у нас на сайте и получите расчет на систему автополива уже завтра!
Конструкция и назначение пилотируемого клапана
Газовый отсечной пилотный клапан SCE238A002 (200 бар), Немен, VIKING, SPOOL, JOUCOMATIC, ЭВЕЛЕН, SMART TORK, состоит из двух основных частей: пропускного устройства и клапана прямого действия. Пропускной механизм преобразует электрическую энергию в механическую, которая, в свою очередь, открывает или закрывает деталь. В клапане прямого действия осуществляется управление потоком жидкости или газа.
Фото — Электромагнитный клапан
Электромагнитные клапаны могут использовать металлические пломбы или резиновые уплотнители, также его легко контролировать. Пружина используется для хранения клапана нормально разомкнутым или сомкнутым, в то время, когда он не используется.
Вода под давлением поступает в камеру. Входное отверстие представляет собой эластичную мембрану, а над ней расположена пружина, толкающая её вниз. Диафрагма имеет отверстие, проходящее через центр, оно позволяет контролировать количество воды, зачастую пропускается очень малая часть. Эта вода заполняет полости на другой стороне диафрагмы, так что давление одинаково по обе стороны клапана.
После того, как диафрагма закрывается клапаном, давление на выходе дна уменьшается, и большее давление держит клапан закрытым. Таким образом, пружина не имеет отношения к закрытию или открытию клапана.
Если ток проходит через мембранный соленоид, вода в камере вытекает через прямой проход быстрее, чем пополняется камера. Входящее давление поднимает диафрагму.
Когда соленоид снова выключается, проход закрыт пружиной, нужно очень мало сил, чтобы толкнуть диафрагму вниз, главный клапан снова закрывается. На практике часто отсутствует отдельная пружина; эластомера диафрагмы адаптирована так, что работает, как собственный источник, в основном в закрытой форме.
Фото — Соленоидные клапаны Sirai
Из объяснения видно, что этот тип клапана зависит от перепада давления между входом и выходом, так как для его работы давление на входе должно быть всегда больше, чем давление на выходе. Если давление на выходе, по любой причине, выше входного, клапан слишком быстро откроется, чтобы этого не допустить разница размеров должна быть не больше половины дюйма.
Для усиления давления часто используется пластиковый уплотнитель, который закрепляется в районе входящего отверстия.
Способ подключения у каждого прибора немного отличается, поэтому очень рекомендуем при покупке прочитать сертификат, проверить паспорт определенной модели. Инструкция подробно описывает монтаж каждого отдельного клапана.
Конструкция клапана и его виды
Конструкция электроклапана для полива надежная и простая. Его составляющие:
Работа автополива зависит от подсоединительных размеров, а также мощности клапанов. По подсоединительным размерам выделяют электромагнитные устройства малые (0,75 дюйма), стандартные (1 дюйм) и большие (1,5 дюйма и больше). Сфера применения клапанов зависит от их мощности:
Для применения в обычной системе орошения на участке стоит купить электромагнитный клапан, мощность которого составляет 24 вольта. Он не представляет опасности для здоровья людей, так как величина напряжения низкая. Прост в эксплуатации, но не все модели оснащены встроенным редуктором давления.
Устройства большой мощности редуктор давления имеют. Применяются обычно не на стандартных участках, а на обширных территориях. Имеют, как правило, резьбовое соединение внутри и снаружи. Иногда резьба заменяется специальным наконечником, позволяющим присоединять шланг. Устанавливаются такие электроклапаны на дренажную подушку из щебня или гравия.
Устройства конструируются с расчетом на сложные условия эксплуатации, изготавливаются из особо прочных материалов. Корпус устойчив к коррозии, диафрагма усилена, обеспечивает полив в течение длительного времени. Выбор подходящей модели должен основываться на параметрах водопроводных труб и пропускной способности.
Первый запуск клапана
- Включайте электропитание только в том случае, если клапан установлен правильно. Обратите внимание, что в системе может присутствовать давление.
- Во время эксплуатации электромагнитная катушка нагревается — не прикасайтесь к ней.
- Сделайте несколько включений-выключений питания, проверьте, что клапан корректно открывается/закрывается.
Если клапан не работает должным образом, то этому могут быть причиной несколько фактов.
1) Неправильная установка клапана.
Отключите питание на клапане, демонтируйте клапан (проверьте, чтобы в системе не было давления и трубопровод остыл). Проверьте, что он был установлен в нужную сторону (по стрелке на корпусе)
2) Грязь в трубопроводе.
Разберите клапан и прочистите детали от грязи.
3) Недостаточное давление в системе. Это актуально для клапанов пилотного действия — прочитайте инструкцию к клапану и проверьте параметры рабочей среды в вашей системе. Клапанам пилотного действия необходимо избыточное давление минимум 0,5 бар. При самотёке они работать не будут.
4) Гидроудар. Гидравлический удар — типичное последствие высокого расхода и давления в трубах небольшого диаметра.
Есть несколько решений этой проблемы:
Увеличьте диаметр трубы, чтобы уменьшить скорость жидкости.Уменьшите давление с помощью редукционного клапана («после себя») перед соленоидным клапаном.Смягчите гидравлический удар с помощью гибкого шланга или компенсатора, установив их перед электромагнитным клапаном.Используйте соленоидный клапан с более длительным временем открытия/закрытия.
Переделка клапана от стиральной машины на питание напряжением 12 вольт постоянного тока
Для автоматического управления различными гидравлическими системами необходимы электрические клапаны. Готовые изделия достаточно дороги. Поищем решение подешевле.
Наиболее доступны клапаны от вышедших из строя стиральных машин.
Катушки таких устройств рассчитаны на напряжение 220 вольт переменного тока, что ограничивает их возможности. Иногда удобнее управлять клапаном низковольтным напряжением 12 вольт.
Мне такой прибор понадобился для регулирования режима отопителя салона автомобиля ВАЗ. Подходящие клапана от иномарок стоят возмутительно дорого, а с повышение курса валюты и вовсе становятся предметом роскоши. Попробуем переделать электроклапан от стиральной машины под бортовое напряжение автомобиля.
Сначала посмотрим, как всё устроено.
Снимаем катушку, засовывая тонкую отвёртку в щель между соленоидом и корпусом. При этом можно слегка сжимать лепестки, фиксирующие катушку соленоида плоскогубцами.
Далее, если есть выбор, выбираем из нескольких клапан с минимальным сопротивлением продувки. Движение воздуха – от входа с резьбой. Открываем клапан с помощью магнита, например от динамика.
Отобранный клапан разбираем дальше – вынимаем плоскогубцами сетку фильтр, отвёрткой резиновую шайбу – прокладку (регулятор расхода жидкости) и проволочным крючком вставку регулятора.
Для работы при напряжении 12 вольт необходимо заменить соленоид (катушку) клапана.
Наиболее подходящий соленоид был найден в воздушном клапане ЭППХХ ВАЗ 2105.
Поскольку в интернете не было найдено изображений внутренностей, приведу их для любознательных.
Подключение электромагнитного клапана к системе полива огорода
Для небольшого сада лучше подойдет электромагнитный клапан для полива -12 вольт (NT8048). Он безопасен, поскольку при попадании воды на контакты и при касании мокрыми руками удара током не произойдет. Возможность его подключения к аккумуляторной батарее на 15 АЧ позволяет работать без подзарядки в течение недели. Несложно также будет сделать питание от щитка через сетевой адаптер.
Подача воды обеспечивается из накопительного бака, установленного на высоте не менее 2 м. Вода в нем набирается из централизованной системы. Заполнение контролируется поплавковым датчиком, соединенным с пробковым вентилем. Отсутствие насоса снимает много проблем.
Клапан устанавливается в напорную магистраль системы полива. Катушка электромагнита подключается к выходу адаптера через кабель с помощью клемм. Их можно закрыть сверху герметиком для защиты от воды.
Все устройство удобно разместить в подсобном помещении, куда можно провести розетку. К ней последовательно подключаются таймер, адаптер и катушка электромагнита. Остается настроить режим полива. Время выбирается утреннее и вечернее, чтобы было минимум испарений, а растения не обгорали на солнце. Устанавливается продолжительность полива, которая затем подбирается экспериментально.
На разные виды растений полив должен отличаться. Систему можно постепенно усовершенствовать, добавляя новые клапаны. К каждому из них можно подключить свой таймер или установить общий микроконтроллер, задавая программу полива.
На отводящих трубопроводах можно установить клапаны от старых стиральных машин, что позволит прилично сэкономить на стоимости системы полива.
Приступим к разборке
Самое простое — срезать завальцовку на наждаке или спилить напильником по внешнему краю. Крышка клапана (вид с внутренней стороны):
Шток, он же пробка. Запирание потока воздуха производится резиновой вставкой на торце. На противоположном торце – углубление под пружину:
Стальная шайба для замыкания магнитного потока и немагнитная направляющая, в которой шток перемещается:
Катушка: 1. В корпусе.
2. Вынута.
Овальные уплотнительные колечки герметизируют вывода изнутри корпуса. Одно из них нам понадобится в дальнейшем, поэтому сохраните их.
И наконец, корпус с внутренней стороны. Виден торец неподвижного магнитопровода с выступом под пружину:
Далее — дорабатываем корпус. На наждаке стачиваем трубочку с расклёпкой с тыльной стороны, и положив корпус донышком вверх, бородком аккуратно выбиваем остатки внутреннего магнитопровода. Если корпус промялся вовнутрь, устраняем деформацию. Далее центральное рассверливаем отверстие до диаметра 9мм.
Для создания магнитной системы, аналогичной системе клапана от стиральной машины, необходимо из жести от консервной банки отрезать две полоски – одну шириной 15 мм, другую – 10 мм. Длина полосок должна быть такой, чтобы на корпусе штока клапана от стиральной машины наматывалось колечко примерно 1,5 витка.
При разработке своей системы отопления наряду с естественной циркуляцией я запланировал себе сделать и принудительную, чтобы можно было привязать к ней автоматический регулятор. Ведь что значит естественная: это открываешь вручную нужный кран (или краны), и нагретая вода сама по себе поднимается к батареям, отдавая там тепло и опускаясь затем вниз, к нагревателю (или к накопителю, термоаккумулятору).
Ну, неудобно же! Не открыл вовремя — в доме похолодало. Не закрыл — слишком тепло, а то и жарко. Мало того, что неуютно, так ведь еще и перерасход, когда жарко. И перерасход не только в том, что сохраненное тепло излишне расходуется в дом, но ведь еще и увеличиваются теплопотери дома, поскольку с увеличением температуры в доме возрастают и теплопотери через ограждающие конструкции (стены, потолок…).
Значит, нужна автоматика. Сложностей на первый вузгляд никаких нет. Датчик температуры управляет, скажем, электромагнитным клапаном. Понизилась температура в доме — датчик открыл клапан. Повысилась — клапан закрывается.
С датчиком температуры у меня проблем, как бы, нет. Имеется такой. А вот электромагнитный клапан… Порыскал в интернете, пошукал по прайсам интернет- и не интернет-магазинов — дорого, блин! И чему там стоить-то такие деньги? Поехал на металлорынок, поговорил с людьми, посоветовался.
Дешевку брать за 2-3 тысячи рублей — значит, брать одноразовое. Но у меня ведь не система водоснабжения, у меня отопление! Если на воде что-то поломалось, отключил воду да и подлатал, а в отоплении зимой в случае чего возни не оберешься — и воду сливать надо, и делать быстро, чтобы не застыть… Вобщем, дешевка меня не устраивает, а дорогой клапан, за 6-7 тысяч рублей… Да и супруга, мягко-мягко говоря, настойчиво возражает против такого приобретения.
Но автоматику все же хочется. На Руси говорят: голь на выдумки хитра. И я тоже решил извернуться и таки сделать автоматику, но при этом не огорчить свою любимую и обойтись без дорогого клапана. Вместо него поставил, ты не поверишь, обратный клапан. Стоит он в сущности копейки, и при этом прекрасно исполняет функции автоматического электромагнитного клапана, правда, только в паре с циркуляционным насосом.
Ты ведь уже догадался, в чем дело? Да-да, дело именно в этом: в обратном клапане имеется пружинка, которая прижимает резиновую прокладку к седлу. Эта пружинка не позволяет двигаться воде в прямом направлении при естественной циркуляции, поскольку давление не столь велико, чтобы отжать резинку от седла.
Ура-ура, и в воздух чепчики бросаем. Но есть и одно но, которое следует учитывать. Сила этой пружинки не рассчитывалась инженерами под такое применение, да еще именно в моей системе отопления. Вся беда в том, что давление на нее при естественной циркуляции напрямую зависит от высоты водяного столба, то бишь, от расстояния, на каком находится верхняя точка самой верхней батареи по отношению к сей пружинке. Справедливости ради стоит упомянуть и зависимость от разницы температур сверху и снизу.
Так вот, в моей системе эта пружинка все же чуть-чуть, но пропускает. То есть, полного закрытия при выключенном насосе нет. Поэтому пришлось попросту, не мудрствуя лукаво, разобрать клапан и растянуть пружинку. На видео эта варварская операция показана в подробностях.
Отвечу сразу на возможные вопросы по фотографии. Обратный клапан последовательно с верхним насосом — это и есть тот клапан, о котором речь. Нижний насос — это другая ветка в отоплении, которая еще ждет своей модернизации. А вот верхний насос с клапаном, как видно на фото, зашунтирован прямым отрезком трубы с краном. Для чего это?
При использовании систем водоснабжения и отопления от возникновения аварийных ситуаций не застрахован никто. Минимизировать риски и потери в случае прорыва позволяет электромагнитный (соленоидный) клапан для воды. Это устройство позволяет быстро перекрыть или, наоборот, открыть поток воды за несколько секунд, находясь на расстоянии. Разберем подробно, как устроен клапан электромагнитный, виды, принципы его работы и монтажа.
Соленоидный клапан – это запорная арматура, закрывающая собой водный поток, позволяет контролировать скорость движения жидкости в трубопроводе. Данные устройства называются электромагнитными, так как их принцип работы построен вокруг электромагнитной катушки (соленоида). Существует несколько видов подобных изделий и у каждого есть свои характеристики и различия в принципе действия.
Автоматический водопроводный затвор включает в себя такие составляющие:
- корпус;
- крышка;
- мембрана и уплотнение;
- плунжер;
- шток;
- электрическая катушка.
Корпус таких агрегатов, обычно, делается из таких материалов как латунь, нержавеющая сталь (для того чтобы увеличить стойкость против коррозии) и чугуна. Достаточно популярны водопроводные электромагнитные клапаны, изготовленные из пластика.
Плунжеры и штоки делают из материалов, которые обладают магнитными свойствами. Электромагнитные катушки помещаются в специальный защитный корпус, у которого достаточно высокие параметры герметичности. Обмотка для катушек, как правило, изготавливается из медной проволоки или эмалированного провода. Такие устройства начинают работать после того как на катушку подается напряжение.
Электромагнитная или другими словами индукционная катушка преобразует электроэнергию в поступательное движение. Наиболее распространенными являются катушки с медной обмоткой на цилиндре. Цилиндр включает в себя магнитный плунжер. Как только на катушку подается импульс, появляется магнитное поле. Как результат действия магнитного поля, сердечник втягивается в катушку.
Мембраны изделий изготавливаются из полимерных материалов, которые имеют высокий уровень эластичности. К таким материалам можно отнести следующие:
- мембраны EPDM, NBR, FKM.
- уплотнения PTFE или TEFLON.
Клапаны могут быть изготовлены из самых разных материалов, корпус изготавливают из пластика, латуни или чугуна.
В том случае если есть необходимость, чтобы перекрыть подачу транспортируемой среды, с блока управления на индукционную катушку подается импульс. Благодаря данному сигналу сердечник устройства поднимается либо опускается (все зависит от конфигурации устройства) и перекрывает поток жидкости. Сразу же после того как исчезает напряжение, сердечник возвращается в исходную позицию и возобновляется движение жидкости.
Проверка клапана
Проверять клапан карбюратора следует на следующих режимах:
- На холостом ходу. После запуска доводят обороты до 2100 и вслушиваются в работу карбюратора. Должен быть слышен резкий характерный звук, означающий закрытие затвора. Далее плавно снижают обороты до значения в 1900, должен быть слышен щелчок открывания.
- Торможение двигателем. Нужно сбросить газ, не выключая передачу. Исправный клапан в этом случае не сработает, даже если обороты снизились до 1900. Если слышен щелчок – устройство неисправно.
- После остановки двигателя. Если при выключенном зажигании в цилиндрах продолжаются самопроизвольные вспышки детонирующей рабочей смеси, двигатель дергается и вибрирует – значит, клапан не перекрывает подачу горючего в камеры и далее в цилиндры.
- Если при работающем моторе вытащить из разъема провод питания электроклапана- двигатель должен заглохнуть. Если он продолжает работать- значит, клапан неисправен.
Кроме способов проверки электромагнитного клапана «на ходу», можно вывинтить клапан из корпуса карбюратора и попробовать подать на него напряжение с аккумулятора. Один провод от батареи присоединяют к контактной колодке, другой- к корпусу прибора. При подключении напряжения клапан должен щелкнуть и втянуть иглу внутрь себя.
Нужно проверить также, подается ли на контакты управляющее напряжение. Его нормальное значение — 10,5-14,4 в. Если на блоке управление напряжение есть, а на контакте –нет, значит, неисправен провод. Его надо отремонтировать или заменить.
Если на разъеме блока управления напряжения нет, то, скорее всего, неисправен сам блок. Его проверяют, подключив клапан к батарее еще одним временным проводом. К выводу блока управления, управляющему клапаном, подключают вольтметр или контрольную лампочку.
Далее следует запустить двигатель. По достижении оборотов в 900 об/мин лампочка должна вспыхнуть, при 2100 об/мин- погаснуть. Если снизить обороны до 1900 об/мин-опять вспыхнуть. Такое поведение лампочки означает исправность блока управления. Если же лампочка вообще не загорается и не гаснет, а также включается и выключается при других оборотах- блок управления подлежит углубленной проверке и, возможно, замене.
Электромагнитный клапан для воды — широко используемое электромеханическое устройство, регулирующее поток жидкостей и газов по трубопроводу.
Конструкция клапана достаточно проста:
- Корпус и крышки клапанов. Для их изготовления может быть использована латунь, нержавеющая сталь, чугун или разнообразные полимеры (эколон, полипропилен, нейлон и прочие).
Клапаны (соленоид на 24 VAC и сам клапан), работающие при любых давлениях и температурах. Благодаря использованию в их конструкции современных материалов, они вполне устойчивы к воздействию агрессивной среды.
Плунжероны и штоки изготавливают из специальных магнитных материалов.
Соленоиды (электрокатушки) заключены в герметичный корпус, служащий надёжной защитой их от пыли. Обмотка выполняется эмаль проводом высокого качества из электротехнической меди.
Соленоидный двигатель принцип работы
В соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей.
Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний.
При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс.
Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике.
Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем.
В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью.
В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения.
Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений. Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов.
Соленоидный двигатель своими руками
Лучшим материалом для катушек считается текстолит или древесина твердых пород. Для намотки используется провод ПЭЛ-1 диаметром 0,2-0,3 мм.
Наматывание выполняется в количестве 8-10 тыс. витков, обеспечивая сопротивление каждой катушки в пределах 200-400 Ом.
После намотки каждых 500 витков делаются тонкие бумажные прокладки и так до окончательного заполнения каркаса.
Для изготовления плунжера применяется мягкая сталь. Шатуны могут быть изготовлены из велосипедных спиц. Верхнюю головку нужно делать в виде небольшого кольцеобразного ушка с необходимым внутренним диаметром. Нижняя головка оборудуется специальным захватом для крепления на шейке коленчатого вала.
Он изготавливается из двух жестяных полосок и представляет собой вилку, которая надевается на шейку кривошипа. Окончательное крепление вилки осуществляется медной проволокой, продеваемой через отверстия. Шатунная вилка надевается на втулку, выполненную из медной, бронзовой или латунной трубки.
Коленчатый вал делается из металлического стержня. Его кривошипы располагаются под углом 120 градусов относительно друг друга. На одной стороне коленчатого вала закрепляется распределитель тока, а на другой – маховик в виде шкива с канавкой под приводной ремень.
Для изготовления распределителя тока можно использовать латунное кольцо или отрезок трубки подходящего диаметра. Получается одно целое кольцо и три полукольца, расположенные по отношению друг к другу со сдвигом на 120 градусов. Щетки делаются из пружинных пластинок или слегка расклепанной стальной проволоки.
Крепление втулки распределителя тока производится на текстолитовый валик, надеваемый на один из концов коленчатого вала. Все крепления осуществляются с помощью клея БФ и шпонок, изготавливаемых из тонкой проволоки или иголок.
Установка распределителя выполняется таким образом, чтобы включение первой катушки происходило при нахождении плунжера в самом нижнем положении.
Если провода, идущие от катушек на щетки, поменять местами, то вращение вала будет происходить в обратном направлении.
Установка катушек производится в вертикальном положении. Они закрепляются разными способами, например, деревянными планками, в которых предусмотрены углубления под корпуса катушек.
По краям крепятся боковины из фанеры или листового металла, в которых предусмотрены места под установку подшипников под коленчатый вал или латунных втулок. При наличии металлических боковин, крепление втулок или подшипников производится методом пайки.
Подшипники рекомендуется устанавливать и в средней части коленчатого вала. С этой целью предусматриваются специальные жестяные или деревянные стойки.
Во избежание сдвига коленчатого вала в ту или иную сторону на его концы рекомендуется припаять кольца из медной проволоки, на расстоянии примерно 0,5 мм от подшипников. Сам двигатель должен быть защищен жестяным или фанерным кожухом. Расчеты двигателя выполняются исходя из переменного электрического тока, напряжением 220 вольт.
В случае необходимости устройство может функционировать и при постоянном токе. Если же сетевое напряжение составляет всего 127 вольт, количество витков катушки следует снизить на 4-5 тысяч витков, а сечение провода уменьшить до 0,4 мм. При условии правильной сборки, мощность соленоидного двигателя составит в среднем 30-50 Вт.
Устройство соленоидного двигателя
Существуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту.
Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока.
Его основным преимуществом считается простота конструкции и доступность материалов для изготовления.
Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника.
Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами.
Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов.
Нередко рассматривается вариант с тремя катушками, отличающийся более сложной конструкцией. Тем не менее, он обладает более высокой мощностью и работает значительно равномернее, не требуя маховика для плавности хода.
Работа данного устройства осуществляется следующим образом.
- Из электрической сети ток попадает на распределитель через щетку соленоида, после чего поступает уже непосредственно в этот соленоид.
- После прохождения по обмотке, ток вновь возвращается в сеть через общие кольца и щетку, установленные в распределителе. Прохождение тока приводит к образованию сильного магнитного поля, втягивающего плунжер внутрь катушки к ее середине.
- Далее поступательное движение плунжера передается шатуну и кривошипу, осуществляющих поворот коленчатого вала. Одновременно с валом происходит поворот распределителя тока, запускающего в действие следующий соленоид.
- Второй соленоид начинает действовать еще до окончания работы первого элемента. Таким образом, он оказывает помощь при ослаблении тяги плунжера первого соленоида, поскольку уменьшается длина его плеча в процессе поворота кривошипа.
- После второго соленоида в работу включается следующая – третья катушка и весь цикл полностью повторяется.
Шаровый с электроприводом,
Моторизованный вентиль может найти свое применение в современных «умных» системах водоснабжения, отопления и кондиционирования воздуха, создаваемых домашними мастерами с минимальным использованием покупных компонентов. Кроме проверки своих сил, тут будет и существенная денежная выгода- покупное устройство с электроприводом стоит от 2 до 10 тыс. руб.
Для шарового крана с установленным электроприводом, сделанного своими руками, понадобятся следующие материалы и комплектующие:
Рисунок 1: Вентиль 3/4
- привод стеклоподъемника для Лада 1117, 2123 левый LSA;
Рисунок 2: Электропривод стеклоподъемника
- реле автомобильные пятиконтактные – 2 шт.;
- концевые микровыключатели- 2 шт.;
- жесть листовая толщиной 1 мм (для станины и хомутов);
- трубка стальная 10 мм- обрезки (для втулок);
- профиль квадратный 10*10 мм- 10 см;
- полоса металлическая 4 мм толщиной- 10*1 см;
- пружина диаметром 12 мм;
- болт М8*45 с гайкой и шайбами- 2 шт.
Все электрооборудование на 12 вольт. Из инструментов нужны:
- дрель;
- ножницы по металлу;
- верстак с тисками;
- сварочный аппарат;
- ручной слесарный инструмент (молоток, отвертка, гаечные ключи, пассатижи и т.п.)
Создаваемый механизм должен позволять управлять электрическим краном как с помощью привода, так и вручную. Последовательность изготовления следующая:
- Выгнуть П-образную раму из листа металла.
- Из отрезков трубки сделать втулки для крапления привода стеклоподъемника к станине.
- Закрепить привод.
- Станину закрепить на патрубках, выходящих из шарового крана, с помощью хомутов.
- Из квадратного профиля вырезать насадку на ось редуктора.
- Приварить к ней полосу.
- Из полосы и рукоятки собрать рычажный механизм привода, подпружинив его. Пружина прижимает рычаги друг к другу, при необходимости их можно быстро разъединить без использования инструментов и управлять краном вручную.
- Полосу шарнирно закрепить к рукоятке с помощью болта и гайки. Гайку законтрить.
- Квадратный профиль закрепить на валу редуктора стеклоподъемника.
Далее следует опробовать кинематику, подавая напряжение на электродвигатель. Можно использовать автомобильный аккумулятор или блок питания мощностью не менее 50 вт. Рычажная передача должна двигаться плавно, без рывков и перекосов. При необходимости подправить задевающие друг друга детали напильником.
Теперь наступает очередь электрической части привода.
- В крайних положениях рукоятки смонтировать концевые микровыключатели.
- Подключать их следует таким образом, чтобы они размыкали цепь управления реле, через которое включен двигатель, по достижении крайнего положения «Открыто» или «Закрыто».