Коралловые полипы | Virtual Laboratory Wiki | Fandom

Коралловые полипы | Virtual Laboratory Wiki | Fandom Огород

Описание

Коралловые полипы обитают в тёплых тропических морях, где температура воды не ниже 20 °C, и на глубинах не более 20 метров, в условиях обильного планктона, которым они питаются. Обычно днём полипы сжимаются, а ночью вытягиваются и расправляют щупальца, с помощью которых ловят различных мелких животных.

Крупные одиночные полипы — актинии (Actinia) — способны ловить и сравнительно крупных животных: рыбу, креветок. Часть видов коралловых полипов живут за счет симбиоза с одноклеточными водорослями, которые живут у них в мезоглее.

Имеются мускульные клетки, образующие продольные и поперечные мышцы. Имеется нервная система, образующая густое сплетение на ротовом диске.

Кораллами обычно называют только скелет колонии, оставшийся после гибели множества мелких полипов. Многие коралловые полипы являются рифообразователями. Скелет может быть наружным, образованным эктодермой, или внутренним, формирующимся в мезоглее.

Как правило, полипы занимают на коралле чашевидные углубления, заметные на его поверхности. Форма этих полипов столбчатая, в большинстве случаев с диском на вершине, от которого отходят венчики щупалец. Полипы неподвижно закреплены на общем для всей колонии скелете и связаны между собой покрывающей его живой мембраной, а иногда и пронизывающими известняк трубками.

Скелет секретируется наружным эпителием полипов, причём главным образом их основанием (подошвой), поэтому живые особи остаются на поверхности кораллового сооружения, а всё оно непрерывно растет. Число участвующих в его образовании полипов также постоянно увеличивается путем их бесполого размножения (почкования).

Кораллы размножаются и половым путем, образуя крошечные свободноплавающие личинки, которые в конечном итоге оседают на дно и дают начало новым колониям. Полипы, как правило, раздельнополые. Сперматозоиды через разрывы стенки гонад выходят в гастральную полость, а затем наружу и проникают через рот в полость женской особи.

Билатерогастрея

Самой популярной теорией происхождения многоклеточных животных всегда была теория гастреи, предложенная в 1866 году Эрнстом Геккелем (Ernst Heinrich Philipp August Haeckel). Согласно этой теории, общий предок животных был пелагическим, то есть постоянно плавающим в толще воды, шарообразным существом, которое двигалось с помощью биения жгутиков.

Геккель назвал этот гипотетический организм бластеей. Потом одно из полушарий бластеи погрузилось внутрь, и возникла гастрея — организм в форме двухслойного мешка, внутренняя полость которого стала кишечной полостью животных.

Стрекающие и гребневики очень похожи по своему плану строения на геккелевскую гастрею — разумеется, слегка усложненную, как и любое реальное живое существо в сравнении с отвлеченной схемой. Впрочем, план строения билатерий тоже можно вывести из гастреи — например, в рамках так называемой архицеломатной гипотезы (см. A.

Теория гастреи содержит два достаточно сильных утверждения. Из нее следует, что общий предок животных был, во-первых, пелагическим (а не донным) и, во-вторых, радиально-симметричным (а не двусторонне-симметричным). Строго говоря, ни тот, ни другой тезис не является настолько очевидным, чтобы принимать его без обсуждения.

Современные палеонтологические данные свидетельствуют скорее о том, что начальные этапы эволюции животных прошли полностью на дне (А. Ю. Журавлев, 2021. Ранняя история Metazoa — взгляд палеонтолога). Тогда получается, что переход к свободному плаванию в толще воды был своего рода эволюционной авантюрой, почти как выход на сушу.

Неудивительно, что он совершался несколькими группами животных независимо друг от друга и в разное время. Косвенно это подтверждается тем, что среди современных простейших родственников многоклеточных животных, которые могли бы сохранить некоторые черты их предков, пелагических форм толком нет (см.

А можно ли отредактировать теорию гастреи так, чтобы она перестала противоречить «донному» сценарию эволюции животных? Да, можно. Именно это сделал в середине XX века известный шведский зоолог Карл Густав Егерстен (Karl Gustav Magnus Jagersten). Предложенная им концепция известна как теория билатерогастреи (рис. 3).

Егерстен признавал часть положений теории Геккеля, но считал, что уже бластея была не пелагическим, а придонным существом. В результате постоянного передвижения по дну у нее дифференцировались стороны тела — обращенная к грунту (брюшная) и обращенная к водной толще (спинная), — а также передний конец, на котором сосредоточились чувствительные элементы. Таким образом, бластея стала двусторонне-симметричной. Егерстен называет ее билатеробластеей.

Билатеробастея захватывала со дна пищевые частицы, обволакивая их своей брюшной стороной, на которой при каждом захвате пищи возникало временное впячивание. Постепенно это впячивание обрело устойчивость и стало постоянным. Так образовался примитивный кишечник, а билатеробластея тем самым превратилась в билатерогастрею.

Кишечник билатерогастреи открывался наружу единственным отверстием, которое было одновременно и входным (ртом), и выходным (анусом). У стрекающих такая ситуация сохранилась до сих пор. У билатерий же отверстие, ведущее в кишку, сначала сильно вытянулось вдоль оси тела, а потом закрылось посредине, разделившись тем самым надвое — на рот и анус, находящиеся, соответственно, впереди и сзади.

Образование рта и ануса путем разделения единого щелевидного отверстия есть в развитии многих билатерий, и это часто рассматривают как след соответствующего этапа их эволюции (см. Вторичноротость может оказаться первичной для двусторонне-симметричных животных, «Элементы», 06.09.2021).

Кроме того, кишечник билатерогастреи предположительно образовал несколько боковых выростов. Егерстен считал, что их было три пары. У коралловых полипов перегородки между этими выростами стали септами. А у билатерий выросты первичной кишки полностью отшнуровались от нее и разместились по бокам в виде самостоятельных мешков — целомических полостей. Подобная версия происхождения целома предлагалась несколькими авторами еще в XIX веке, Егерстен просто ее дополнил.

От билатерогастреи Егерстена вполне могли бы произойти, с одной стороны, билатерии, а с другой — коралловые полипы (рис. 4). Более того, Егерстен писал, что именно особенности анатомии коралловых полипов ему эту теорию и подсказали. Широкой популярности его взгляды не получили, потому что в них входило несколько очень спорных на тот момент утверждений.

Любой сторонник теории билатерогастреи должен был признать, во-первых, что кораллы — самые примитивные стрекающие, во-вторых — что у предков стрекающих была двусторонняя симметрия, и в-третьих — что общий предок стрекающих и билатерий эволюционировал на дне.

Но сейчас эти тезисы, причем все три, выглядят гораздо более похожими на правду, чем полвека назад! Проницательность Густава Егерстена, признаться, поражает. Ну а если верны отдельные составные части теории, то почему не может быть верной вся теория целиком?

Тут придется добавить ложку дегтя: предположения, с которыми согласиться невозможно, у Егерстена тоже встречаются. Например, он считал, что билатеробластее предшествовала стадия радиально-симметричной пелагической бластеи, которая плавала в толще воды и питалась путем фотосинтеза (!). Увы, современные знания делают эту версию совершенно невероятной. У животных не могло быть фотосинтезирующих предков.

Древо животного мира

Современная зоология выделяет пять главных эволюционных ветвей многоклеточных животных: губки, гребневики, пластинчатые, стрекающие (книдарии) и двусторонне-симметричные (билатерии). Подавляющее большинство животных, с которыми мы встречаемся в обычной жизни, относится к группе билатерий.

Ее бесчисленные представители, от шмеля до морской звезды и от плоского червя до человека, своим разнообразием намного превосходят весь остальной животный мир вместе взятый. Билатерии — безусловно, самая эволюционно успешная группа не только среди животных, но и среди всех многоклеточных организмов на Земле.

Надо признать, что проблема происхождения билатерий еще не решена. Более того, регулярно случаются новые открытия, заставляющие ученых вновь и вновь пересматривать взгляды на нее (см., например: Ксенотурбеллиды оказались близки к предкам двусторонне-симметричных животных, «Элементы», 15.02.2021).

Большинство биологов традиционно полагало, что двусторонне-симметричные животные произошли от кишечнополостных — организмов, у которых симметрия тела радиальная (Radiata). Именно в соответствии с этой схемой построен, например, школьный учебник зоологии.

По умолчанию считается, что радиальная симметрия примитивна, а двусторонняя производна. Вероятно, двусторонняя симметрия возникла в момент, когда кишечнополостное, обладавшее радиальной симметрией (как медуза), перешло к активному ползанью по морскому дну.

Слабость этой идеи в том, что ни радиально-симметричные животные (Radiata), ни кишечнополостные (Coelenterata), скорее всего, не являются реальными эволюционными ветвями. Это сборные группы. Под названием «кишечнополостные» раньше объединяли гребневиков и стрекающих (к последним относятся медузы, кораллы, гидры и прочие полипы).

На самом деле сходство гребневиков со стрекающими — поверхностное, а родство в лучшем случае очень далекое (см., например: Дискуссия о роли гребневиков в эволюции продолжается, «Элементы», 18.09.2021). Никакого отношения к происхождению билатерий гребневики, скорее всего, не имеют.

Наоборот, стрекающие (Cnidaria) к билатериям очень близки. По современным данным, это их ближайшие родственники. Казалось бы, такое родство только подтверждает гипотезу о происхождении билатерий от радиально-симметричных организмов. Каждый, кто видел медузу или гидру, подтвердит, что их симметрия — радиальная, то есть лучевая. Почему бы билатериям не иметь таких предков?

Но и тут не все так просто.

Загадка кораллов

Мы уже сказали, что стрекающие и билатерии — ближайшие родственники. Иными словами, они равноправные потомки некоего предка, общего только для этих двух групп. Такие группы называются сестринскими. Очевидно, что быть предками или потомками друг друга сестринские группы не могут по определению.

И в самом деле, стрекающие и билатерии появляются в палеонтологической летописи приблизительно одновременно — в конце вендского периода (см. A. Y. Ivantsov, M. A. Fedonkin, 2002. Conulariid–like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Palaeozoic boundary).

Но как же был устроен общий предок билатерий и стрекающих? Палеонтология ответить на этот вопрос пока не может. Значит, дело за сравнительным исследованием современных животных. Что могут нам «сообщить» стрекающие в свете сравнения с билатериями?

Стрекающие — крупная группа животных, в состав которой входит больше 10 000 современных видов. Они бывают очень разными. Крохотная пресноводная гидра совсем не похожа на роскошных медуз или на невзрачных строителей громадных коралловых рифов. Тем не менее можно утверждать, что все стрекающие делятся всего лишь на два эволюционных ствола (рис. 1).

Ствол Anthozoa — это коралловые полипы, донные животные, никогда не имеющие в своем развитии стадии медузы. Ствол Medusozoa состоит из животных, у которых стадии медузы и полипа, как правило, чередуются в одном и том же жизненном цикле.

У некоторых Medusozoa или стадия медузы, или стадия полипа могут отсутствовать, но это — случаи вторичной утраты. Судя по всему, «изобретение» жизненной формы медузы и соответствующего типа жизненного цикла было важнейшим в истории стрекающих эволюционным новшеством.

А положение ствола Anthozoa на эволюционном древе позволяет думать, что именно он сохранил самые древние признаки. Более того, есть работы, где предполагается, что Anthozoa — вовсе не ствол, а эволюционный уровень, охватывающий всех древнейших стрекающих (E. Kayal et al., 2021.

Коралловые полипы сами по себе довольно разнообразны (число их видов превосходит число видов всех Medusozoa, вместе взятых). Они бывают одиночными или колониальными, бывают прикрепленными или подвижными, как, например, популярная у биологов развития хищная актиния нематостелла. Тем не менее у всех коралловых полипов можно выделить как минимум две общие особенности, важные для нашей темы (рис. 2).

Во-первых, перед входом в кишечную полость кораллового полипа всегда находится трубчатая глотка, отчетливо сплющенная в одной плоскости. Просвет такой глотки представляет собой более или менее широкую щель. У многих видов щелевидным становится и рот — это видно снаружи.

Во-вторых, кишечная полость кораллового полипа разделена врастающими со стороны стенок перегородками — септами — на несколько частично замкнутых камер. Точное число камер соответствует числу щупалец, окружающих рот. Некоторые авторы считали эти камеры предшественниками целомических полостей двусторонне-симметричных животных (они действительно образуются похожим способом).

Наш известный зоолог Владимир Васильевич Малахов в свежем обзоре обращает внимание на то, что внутренняя симметрия тела коралловых полипов не является радиальной. На самом деле их симметрия — двусторонняя. Особенно хорошо это заметно у одиночных шестилучевых кораллов из группы цериантарий.

Щелевидный рот цериантарий ведет в сплющенную глотку, плоскость которой служит плоскостью двусторонней симметрии всего животного. На одном узком конце глотки находится сифоноглиф — продольный желобок, выстланный клетками с ресничками и предназначенный для тока воды.

Вблизи другого узкого конца глотки расположена зона роста, в которой образуются новые септы. Сторону полипа, где у цериантарий находится сифоноглиф, по традиции называют «спинной», а сторону, где находится зона роста, «брюшной». Это полноценная двусторонняя симметрия — как у билатерий.

В других группах коралловых полипов картина усложняется (например, может появляться второй сифоноглиф), но внутренняя двусторонняя симметрия, определяемая плоскостью глотки, сохраняется у них всегда. По утверждению Малахова, она есть абсолютно у всех представителей Anthozoa. А вот у Medusuzoa ее, как правило, не бывает, там симметрия чисто радиальная.

Зоология беcпозвоночных | dachniymir.ru

Коралловые полипы — морские колониальные, реже одиночные полипы, развивающиеся без смены поколений. Преимущественно обитают в теплых тропических морях, где температура воды не ниже 20°С, и на глубинах не более 20 м, в условиях обильного планктона, которым они питаются. Всего известно около 6 тыс. видов коралловых полипов. Многие из них имеют известковый скелет и являются рифообразователями.

Коралловые полипы, несмотря на общее сходство строения с гидроидными, отличаются от последних следующими особенностями:

— размеры коралловых полипов крупнее и у них сильно развита

мезоглея

,

— у большинства видов хорошо развит скелет (роговой или известковый). Скелет может быть наружным, образованным эктодермой, или внутренним, формирующимся в мезоглее;

— гастрольная полость

подразделена перегородками-септами на камеры. Имеется эктодермальная глотка со жгутиковыми бороздками-сифоноглифами, обеспечивающими ток воды в гастральной полости;

— гонады образуются в энтодерме. Размножение бесполое и половое. Развитие с метаморфозом. Личинка — планула. Чередования поколений нет;

— имеются

мускульные клетки

, образующие продольные и поперечные мышцы;

— нервная система образует густое сплетение на ротовом диске;

— лучевая симметрия нарушена и наблюдается переход к

двулучевой

, или билатеральной, симметрии.

141

Различают два подкласса современных коралловых полипов: Восьмилучевые (Octocorallia) и Шестилучевые (Hexacorallia), между которыми наблюдаются существенные различия в организации. Поэтому, характеризуя морфологию и физиологию коралловых полипов, удобнее дать сравнительный очерк организации Octocorallia и Hexacorallia.

Сравнительная морфофизиологическая характеристика 6- и 8-лучевых коралловых полипов. Тело полипов цилиндрическое. Одиночные полипы подошвой прикрепляются к субстрату, а колониальные к телу колонии — ценосарку. На оральном полюсе полипа находится рот, окруженный всегда полыми щупальцами (рис. 96). По числу щупалец легко различить подклассы коралловых полипов: у 8-лучевых всегда восемь щупалец и они перистые, с боковыми выростами, а у 6-лучевых щупальца гладкие и их число кратно шести (рис. 96, 97).

Гастральная полость сложная. Рот ведет в сплющенную в одном направлении глотку со складчатой эктодермальной выстилкой. У Octocorallia в одном конце глоточной щели имеется сифоноглиф — желобок, выстланный мерцательным эпителием. У Hexacorallia сифоноглифов два — в обоих углах глоточной щели. Сифоноглифы обеспечивают ток воды через гастральную полость. Щелевидная глотка и наличие 1- 2 сифоноглифов нарушают радиальную симметрию полипов, и потому у 8-лучевых полипов можно провести только одну, а у б-лучевых только две плоскости симметрии. Глотка ведет в гастральную полость, которая подразделена

142

Рис. 98. Поперечные разрезы через восьмилучевой и шестилучевой полипы (А - по Хиксону, Б - по Хайману) 1 - глотка, 2 - полость глотки, 3 - сийроноглиф, 4 - вентральная направительная камера, 5 - септа, 6 - мускульный валик септы, 7 - дорзальная направительная камера, 8 - внутренние камеры между септами первого порядка, 9 - внутренние камеры между вторично возникающими септами, 10 - промежуточные камеры, 11 - эктодерма, 12 - энтодерма, мезоглея зачернена

Рис. 98. Поперечные разрезы через восьмилучевой и шестилучевой полипы (А — по Хиксону, Б — по Хайману): 1 — глотка, 2 — полость глотки, 3 — сифоноглиф, 4 — вентральная направительная камера, 5 — септа, 6 — мускульный валик септы, 7 — дорзальная направительная камера, 8 — внутренние камеры между септами первого порядка, 9 — внутренние камеры между вторично возникающими септами, 10 — промежуточные камеры, 11 — эктодерма, 12 — энтодерма, мезоглея зачернена

радиальными перегородками — септами. Септы представляют собой боковые складки энтодермы, причем каждая складка соответственно состоит из двух слоев энтодермы, между которыми находится мезоглея с мускульными клетками. Септы свободным краем прирастают к глотке, а ниже глотки не смыкаются, образуя желудок. Края септ утолщены, гофрированы, усажены стрекательными и пищеварительными клетками, образуя мезентериальные нити. Их свободные концы называются аконциями. Добыча, попадающая в желудок полипа, плотно облегается мезентериальными нитями, умерщвляется и постепенно переваривается под воздействием пищеварительных ферментов. Наличие септ увеличивает пищеварительную поверхность у полипов. Число септ и их расположение различно в двух подклассах (рис. 98).

У Octocorallia восемь септ с мышечными валиками. Пары септ, отходящие от двух углов уплощенной глотки, называются направительными Направительная камера напротив единственного сифоноглифа отличается тем, что мускульные валики в ее септах обращены внутрь. Эту камеру условно называют «вентральной». На септах противоположно расположенной «дорзальной» камеры валики обращены наружу от камеры. Таким образом, расположение мускульных валиков в септах Octocorallia также нарушает радиальную симметрию.

У Hexacoralha септ много, не менее 12, и их число кратно шести. Мускульные валики в направительных камерах обращены наружу и не нарушают двулучевой симметрии, определяемой формой глотки и двумя

143

сифоноглифами. Септы у 6-лучевых полипов формируются постепенно. Вначале возникает шесть пар септ первого порядка, которые прирастают к глотке. Между септами каждой пары образуются основные камеры, а между ними — промежуточные, в которых образуются дополнительные пары септ второго порядка и т. д. (рис. 98).

Питание у коралловых полипов разнообразно. Многие питаются планктоном или ловят мелких животных при помощи щупалец. Крупные одиночные полипы — Актинии (Actinia) способны ловить и крупных животных: рыбу, креветок. Ну а в последнее время выяснилось, что часть видов коралловых полипов живут за счет симбиоза с одноклеточными водорослями, которые у них живут в мезоглее.

Для коралловых полипов, ведущих в основном прикрепленный образ жизни, характерно наличие скелета, который образуется по-разному у разных подклассов.

У 8-лучевых полипов скелет внутренний и образуется в мезоглее, он может быть роговым или известковым. Скелетные элементы (рис. 99) образуются в клетках-склеробластах. Скелетные иглы могут сливаться между собой или соединяться роговым веществом, формируя скелет колонии. Например, у благородного коралла (Corallium rubrum) скелетный ствол колонии известковый, пурпурного цвета. Сверху ветвь колонии покрыта эктодермой. Внутренний скелет пронизан сетью энтодермальных каналов, связывающих всех членов колонии (рис. 97).

У 6-лучевых полипов скелет наружный, выделяемый эктодермой, реже внутренний или отсутствует. Рост наружного скелета вокруг молодого полипчика происходит от области подошвы, где возникает вначале подошвенная пластинка, а на ней формируются известковые септы — склеросепты, а затем уже образуется чашечка — тека, которая защищает весь полип до уровня щупалец. Скелет часто обрастает складками кожи сверху и производит впечатление внутреннего.

Имеются полипы без скелета, например актинии. У многих 8-луче-вых полипов скелет развит слабо и его заменяет гидроскелет — тургор колонии, обеспечиваемый наполняемостью гастральной полости водой.

144

145

Размножение и развитие. Полипы могут размножаться бесполым путем: почкованием, делением в поперечном и продольном направлениях.

Перед половым размножением на септах в энтодерме созревают гонады. Полипы, как правило, раздельнополые. Сперматозоиды через разрывы стенки гонад выходят в гастральную полость, а затем наружу и проникают через рот в полость женской особи. Оплодотворенные яйцеклетки некоторое время развиваются в мезоглее септ. Личинки-планулы обычно покидают материнский полип, а затем оседают на твердый субстрат и превращаются в полипов (рис. 100, 5). У многих коралловых полипов развитие протекает без метаморфоза и личинка планула не образуется.

Обзор подклассов и отрядов коралловых полипов. Всего известно пять подклассов коралловых полипов, из которых три подкласса известны лишь в ископаемом состоянии (Tabulata, Rugosa, Heliolitoidea). Два подкласса представлены современными формами (Octocorallia и НехасогаШа) (рис. 101, 102).

У восьмилучевых кораллов восемь щупалец, восемь септ, скелет внутренний. Наблюдается нарушение радиальной симметрии до билатеральной в связи с наличием одного сифоноглифа и расположением мускулистых валиков в септах (рис. 98 А).

Отряд Альционарии (Alcyonaria) — самый многочисленный, включающий около 1300 видов морских полипов. Среди них большинство — мягкие кораллы, без развитого скелета, с отдельными разбросанными в мезоглее спикулами. Они образуют колонии разнообразной формы: ветвистые, дольчатые, шаровидные. Примером мягких кораллов могут служить колонии альционарии — «руки» (рис. 103). Лишь некоторые виды рода Tubipora — органчика обладают развитым известковым скелетом, образующим трубочки в мезоглее, спаянные поперечными пластинками. Их скелет отдаленно по форме напоминает орган, с чем и связано их название. Органчики образуют крупные шаровидные колонии и участвуют в рифообразовании. На Белом море распространены кораллы рода Versemia fruticosa. Альционарии нередко образуют густые заросли на скалистых грунтах.

Отряд Роговые кораллы (Gorgonacea) составляют полипы с внутренним роговым скелетом. Это также богатый видами отряд (1200 видов), встречающийся преимущественно в тропических областях, но некоторые из них припособились к обитанию в полярных районах. Вееровидные колонии образуют полипы рода Gorgonia, называемые веером Венеры.

146

147

К числу горгонарий относятся промысловые красные кораллы (Corallium rubrum) и близкие к нему виды, добываемые в Средиземном, Красном и других морях. Их органический скелет пропитан известью и обладает различными оттенками красного цвета. Из красного коралла изготавливают ценные ювелирные изделия.

Отряд Морские перья (Pennatulacea). Морские перья образуют колонии перьевидной формы: с толстым стволом, на котором по бокам правильными рядами располагаются полипы. Число видов невелико (300). Некоторые виды распространены в Ледовитом океане, причем среди них встречаются самые крупные колонии высотой до 2,5 м (Umbrella encrinus). Колонии Pennatula способны к свечению. Морские перья, в отличие от других коралловых полипов, не прирастают к субстрату. Они заякориваются в грунте, а иногда переплывают с места на место.

У шестилучевых кораллов множество гладких щупалец, число которых кратно шести. Гастроваскулярная полость разделена сложной системой септ, число которых также кратно шести. Шестилучевая симметрия нарушается до двухлучевой из-за двух сифоноглифов и щелевидной формы глотки. Часто скелет наружный, известковый, редко отсутствует. Выделяют пять отрядов шестилучевых кораллов.

Отряд Актинии (Actinaria) включает в основном крупные формы одиночных полипов, лишенных скелета. Актинии способны медленно передвигаться на подошве. Это активные хищники, иногда поедающие даже мелких рыб. Нередко они ярко окрашены, и их называют морскими анемонами. Некоторые актинии находятся в симбиозе с раками-отшельниками, которые им служат для передвижения, а актинии со стрекательными свойствами защищают отшельников от врагов (рис. 104).

Отряд Цериантарии (Ceriantharia) — одиночные роющие полипы с сильной мускулатурой и без скелета.

Отряд Зоантарии (Zoantharia) — одиночные и колониальные полипы со слаборазвитыми мышечными клетками.

148

Отряд Антипатарии (Antipatharia) образуют перистые колонии с осевым роговым скелетом. Сюда относится и промысловый черный коралл, из скелета которого изготавливают различные художественные изделия: трубки, рукоятки тростей, ножей.

Отряд Мадрепоровые кораллы (Madreporaria) — самый обширный и включает более 2500 видов. Сюда относятся как одиночные, так и колониальные полипы. Для всех мадрепоровых характерно наличие мощного известкового скелета. Эта группа кораллов — основные рифообразователи. К ним относятся мозговики (Leptoria) в виде полушарий с причудливыми бороздами, грибовидные кораллы (Fungia) и др.

Коралловые рифы и их происхождение. Массовые поселения коралловых полипов, обладающих известковым скелетом, образуют рифы. В состав рифа входят в основном мадрепоровые полипы, но частично участвуют и шести лучевые кораллы, а также другие животные, обладающие скелетом: губки, мшанки, моллюски и др.

Коралловые рифы представляют собой своеобразные экосистемы, характеризующиеся особым составом аутотрофных и гетеротрофных организмов, которые взаимосвязаны между собой пищевыми цепями и другими формами межвидовых отношений. Население коралловых рифов настолько велико и многообразно, что их называют морскими «оазисами». Это резерваты морской фауны и флоры, они заслуживают охраны со стороны человека.

Рифообразующие коралловые полипы распространены только в тропических областях Мирового океана, так как нуждаются в нормальной океанической солености (не менее 35% промилле), высокой и постоянной температуре воды (не менее 20°С). Кроме того, кораллы чувствительны к освещенности и насыщенности воды кислородом и потому встречаются на мелководье и обычно не заходят на глубину более 50 м. Зависимость распределения кораллов от освещенности определяется их симбиозом с одноклеточными водорослями — симбиодиниумами, или зооксантеллами, населяющими клетки энтодермы полипов. Взаимовыгодность их сосуществования заключается в следующем. Водоросли получают от кораллов защиту и углекислый газ (продукты дыхания) для фотосинтеза, а также некоторые дефицитные в морской воде соединения азота и фосфора из продуктов диссимиляции полипа. Коралловые полипы, в свою очередь, получают от водорослей кислород, необходимый для дыхания, а также для активизации процессов скелетообразования. Кроме того, полипы частично питаются за счет водорослей, но не так, как думали об этом ранее, — путем их переваривания в цитоплазме, а за счет прямого использования продуктов фотосинтеза, поступающих непосредственно из клеток водорослей. Симбиоз также основан на темпах жизненных циклов этих видов. Как все простейшие, зооксантеллы имеют суточный ритм размножения, а кораллы существуют длительно. Отмирающие

149

водоросли перевариваются в цитоплазме полипа. Таким образом, эта система основана на безотходном процессе. При этом особенно велика зависимость коралловых полипов от зооксантелл, без которых они погибают.

Рифы бывают береговые, барьерные и атоллы — коралловые острова кольцевидной формы. Впервые гипотезу о происхождении коралловых рифов предложил Ч. Дарвин (1836). Он применил метод исторической геологии о вековых колебаниях суши для объяснения образования коралловых островов. По его мнению, все типы рифов образовались в результате опускания суши (рис. 105). Если остров, окруженный береговым рифом, постепенно опускается, его берега отступают от рифа, который достраивает себя до поверхности океана и превращается в барьерный риф. При полном погружении острова остается кольцо от прежнего барьерного рифа, т. е. образуется коралловый остров — атолл, который потом постепенно заселяется растениями и животными. Существует много других гипотез о происхождении различных типов рифов, однако гипотеза Ч. Дарвина остается наиболее аргументированной и выдержала испытание временем. В настоящее время эта гипотеза дополнена новыми научными данными. Предполагается, что изменение уровня суши зависит не только от ее опускания, но и от изменения уровня океана в периоды оледенения или таяния ледяных шапок у полюсов. Из отмирающих коралловых рифов, погруженных в океан, возникали осадочные породы — коралловые известняки. В палеозое эти породы образовывались подклассами кораллов Rugosa и Tabulata, а начиная с мезозоя в основном мадрепоровыми полипами.

150

перейти к началу страницы

Какая симметрия первична?

Итак, самая древняя эволюционная ветвь стрекающих — это коралловые полипы, у которых нет медузы и есть внутренняя двусторонняя симметрия. По мнению Малахова, есть все основания считать, что это состояние примитивно для стрекающих в целом. Он пишет:

«Билатеральную симметрию кораллов нельзя считать вторичной, развившейся под влиянием образа жизни, поскольку все Anthozoa — сидячие животные, что, как известно, способствует развитию радиальной симметрии. Билатеральную симметрию кораллов можно рассматривать как первичную, унаследованную от билатеральных предков Cnidaria, тогда как неполная радиальная симметрия, видимо, развилась под влиянием прикрепленного образа жизни.»

Биология развития подтверждает, что двусторонняя симметрия «впечатана» в структуру организма коралловых полипов очень глубоко. Малахов приводит список из полутора десятков важных регуляторных генов, активность которых четко привязана или к «спинной», или к «брюшной» стороне кораллового полипа (в основном это изучали на примере уже упоминавшейся нематостеллы).

Получается, что радиальная симметрия стрекающих — это, скорее всего, эволюционное новшество. План строения медузы можно считать наследием древнего эволюционного прошлого не в большей степени, чем план строения морской звезды или морской лилии — несомненных представителей билатерий, освоивших когда-то радиальную симметрию из-за специфического образа жизни (см., например:

Уникальность плана строения иглокожих связана с перестановкой Hox-генов, «Элементы», 18.08.2021). Двусторонняя симметрия была исходной и для билатерий, и для стрекающих. Тогда логично предположить, что общий предок этих двух групп тоже был двусторонне-симметричным, а билатерии и кораллы просто унаследовали его состояние.

Допустим, что он прав. Какие выводы, касающиеся путей эволюции животного мира, мы можем отсюда сделать?

Какие бывают виды коралловых полипов

На сегодняшний день известно свыше шестисотвидов коралловых полипов, имеющих окраску различных цветовых оттенков. Наиболее часто встречающиеся кораллы коричневых, белых или красных оттенков, чуть менее редкие раскрашены в желтые, розовые и черные цвета, и наиболее редкая расцветка у коралловых полипов — сине-фиолетовая.

По числу щупалец кораллы разделяются на шестилучевые и восьмилучевых, которые в свою очередь подразделяются еще на одиннадцать подвидов.

К подвидам, имеющим по шесть щупалец, причисляют актинии, черные кораллы, цериантарии и др., Восьми щупальцевые в себя включают морские перья, мягкие и роговые кораллы.

На сегодняшний день ведется активная добыча кораллов, из них изготавливается масса сувениров, так же они идут на создание недорогих ювелирных изделий. По этой причине кораллы подвергаются хищническому истреблению и нуждаются в защите ввиду возможного уничтожения.

И в заключение статьи, хочется предложить вашему вниманию интересное видео, которое более детально познакомит вас с жизньюкоралловых полипов:

Нерешенные вопросы

Владимир Васильевич Малахов, судя по его более ранним работам, считает, что стрекающие и билатерии произошли от пелагического радиально-симметричного общего предка (В. В. Малахов, 2004. Новый взгляд на происхождение билатерий). Будучи изображенным, этот предок очень похож на классическую геккелевскую гастрею.

Но стоит мысленно «перенести» образование кишечника у этого существа на стадию, когда оно уже жило на дне, и теория гастреи тут же превращается в теорию билатерогастреи, которая нисколько не хуже согласуется с данными по кораллам. Разница в том, что в этом случае пелагический предок животных (если он вообще был) выглядит намного более простым.

Впрочем, даже если все наши допущения верны, это не закроет тему, а породит сразу несколько новых проблем, требующих решения. Перечислим их.

Во-первых, теория билатерогастреи неплохо объясняет происхождение стрекающих и билатерий, но очень неубедительно — происхождение губок и гребневиков. Вопрос о том, как мог выглядеть общий предок всех этих четырех групп животных, в любом случае открыт.

Во-вторых, непонятно, соответствуют ли «спинная» и «брюшная» стороны кораллового полипа спинной и брюшной сторонам билатерий. Между тем это очень важный вопрос. Ответить на него, скорее всего, сможет генетика развития — гены, регулирующие становление сторон тела у кораллов, предоставляют для этого вполне достаточно материала.

В целом гены, управляющие развитием, у стрекающих примерно те же, что и у билатерий, но вот их взаимодействие может отличаться. На сходной элементной базе здесь собрана существенно другая конструкция. Какая ее часть унаследована от общего предка, предстоит еще разбираться.

В-третьих, эволюция плана строения внутри группы Anthozoa сама по себе достаточно сложна. Если у цериантарий единственный сифоноглиф находится на «спинной» стороне, то у восьмилучевых и некоторых других кораллов — на «брюшной» (рис. 2). Кроме того, многие шестилучевые кораллы имеют два сифоноглифа на противоположных сторонах глотки — в этом случае двусторонняя (билатеральная) симметрия начинает трансформироваться в двулучевую (бирадиальную). Какое из всех этих состояний самое древнее, с ходу и не скажешь.

В-четвертых, самые примитивные современные билатерии — ксенацеломорфы — оказались устроены гораздо проще, чем можно было бы ожидать, исходя из теории билатерогастреи (см. Ксенотурбеллиды оказались близки к предкам двусторонне-симметричных животных, «Элементы», 15.02.2021).

У них нет ни сквозного кишечника, ни целомических полостей. Это — серьезное противоречие, от которого так просто не отмахнешься. Можно, конечно, предполагать, что ксенацеломорфы упростились вторично, но это требует независимых доказательств, которых пока нет.

Подклассы

Различают два подкласса современных коралловых полипов: восьмилучевые (Octocorallia) и шестилучевые (Hexacorallia), между которыми наблюдаются существенные различия в организации.

Оцените статью
Дачный мир
Добавить комментарий