Простая система автоматического полива | Мастер-класс своими руками

Простая система автоматического полива | Мастер-класс своими руками Огород

Беспроводные датчики влажности почвы

Подглядев, как китайцы делают за доллар датчики, в которых сенсором является часть платы (Capacitive soil moisture sensor на алиэкспресс), покрытой лаком, сделал аналогичный сенсор. В качестве контроллера был взят уже знакомый STM32, на 20 пинов, только серия уже F0.

В качестве измерителя был взят уже знакомый таймер 555. И теперь сенсор стал не сопротивлением (как в EC измерителе), а ёмкостью. На практике изучая вопрос скорости опустошения получившимся датчиком батарейки CR2032, узнал, что есть версия таймера 555, построенная на полевых транзисторах, что означает меньшее энергопотребление (привет L293 и L6205). Называется LMC555.

Помимо этого на плате датчика был добавлен TMP100 – I2C термодатчик. Он был запланирован, чтобы узнавать температуру воздуха вокруг датчика. По правде, в STM32 уже встроен термодатчик. Но я решил, что на испытательных образцах, второй датчик лишним не будет. Также добавлен светодиод, для индикации работы и, возможно, определения освещённости датчика.

Первые испытания таких датчиков показали, что генерируемая таймером 555 частота (которая расценивается как влажность субстрата) сильно зависит от температуры почвы/датчика. Справедливости ради, аналогичная ситуация и с датчиками кислотности и электропроводности, где для более корректных считываний значений аналогично применяются алгоритмы температурной компенсации показаний. Именно поэтому, подавляющее большинство датчиков EC уже снабжены термодатчиком.

В датчиках от Xiaomi показания выдаются как по влажности субстрата, так и по его насыщенности солями. Подозреваю, что соли измеряются двумя стальными пиптиками на концах лепестков, позволяя скорректировать ёмкостные измерения с лепестков. Но это неточно.

Следует также упомянуть, что существуют датчики влажности почвы, выполненные на принципе поверхностного натяжения воды — тензиометры. В керамический конус (типа, blumat) помещается датчик давления. С него и берутся показания, переводимые позже в показания влажности.

На этом, думаю, хватит. Ежели будут вопросы — отвечу в комментариях или допишу ещё часть.

Делаем автополив комнатного цветка на arduino за 15 минут

После того как у меня сдох очередной цветок, я понял, что неплохо было бы как-то автоматизировать процесс полива.

Не мудрствуя лукаво, я решил собрать конструкцию, которая бы поливала цветок вместо меня. В итоге у меня получился вот такой аппарат, который вполне справляется со своими обязанностями:

image

При помощи двух регуляторов можно настроить объём поливаемой за раз воды, а также период между поливами. Кому интересно — далее подробная инструкция, как сделать такое устройство.

Для сборки поливалки вам понадобится некоторое количество компонентов и не более чем 30 минут свободного времени.

Используемые компоненты:

  • Arduino Mega (она просто была под рукой, но любая другая подойдёт)
  • Насос и силиконовая трубка (подойдёт насос омывателя автомобильных стёкол — можно купить в любых автозапчастях или можно купить маленький погружной насос на ebay)
  • Блок питания
  • Два переменных резистора для регулировки (любые)
  • Транзистор IRL3705N
  • Два резистора (100 Ом и 100 кОм)
  • Диод (любой)
  • Резервуар для воды (в моем случае пластиковая коробочка из Ikea)
  • Макетка

image

Собираем всё по такой схеме:
image

Или нагляднее:
image

Вот что получилось у меня:
image

Сначала протестим насос. Подадим на него 5В. Если он зажужжал, всё в порядке, двигаемся дальше.

Теперь подключим насос к Arduino. Сделаем для управления насоса с ардуино небольшую обвязку на макетке.
image

Попробуем поуправлять насосом с Ардуино. Зальём такой код

int pumpPin = 5;

void setup() {
  pinMode(pumpPin, OUTPUT);
  digitalWrite(pumpPin, LOW); 
}

void loop() {
  digitalWrite(pumpPin, HIGH);
  delay(1000);
  digitalWrite(pumpPin, LOW);
  delay(1000);
}

Если он периодически жужжит, значит, снова всё в порядке.

Теперь нам осталось добавить два регулятора. Подцепим к нашему устройству переменные резисторы, и проверим их работоспособность.
image

Зальём такой код на Ардуино

int volumePin = A0;

void setup() {
  pinMode(volumePin, INPUT);
  Serial.begin(9600);
}

void loop() {
  Serial.println(analogRead(volumePin));
  delay(100);  
}

Зайдём в Serial Monitor и убедимся, что есть реакция на поворот регулятора. Он должен меняться примерно от 0 до 1024

image

Теперь осталось заставить заработать всё это вместе.

Вот непосредственно код поливалки:

// Первый регулятор управляет временем, которое будет литься вода (от 4 до 15 секунд)
#define MAX_FLOWTIME 15 // seconds
#define MIN_FLOWTIME 4 // seconds

// Второй регулятор управляет частотой полива от раза в день до раза в неделю
#define MAX_PERIOD 7 // days
#define MIN_PERIOD 1 // days

#define MAX 1015
#define MIN 0

int volumePin = A0; // Пин, к которому подцеплен регулятор, отвечающий за объём поливаемой воды
int periodPin = A1; // Пин, к которому подцепелн регулятор, отвечающий за период между поливами
int pumpPin = 5; // Пин, к которому подсоединено управление насосом

int volume;
int period;

// Процедура, включающая насос на время, заданное в volume
void water() {
  digitalWrite(pumpPin, HIGH); // включаем насос
  delay(volume);
  digitalWrite(pumpPin, LOW); // выключаем насос
  delay(period);  
}


void setup() {
  pinMode(pumpPin, OUTPUT);
  digitalWrite(pumpPin, LOW); 
}

void loop() {
  // Считываем значения регуляторов (переменных резисторов) и приводим их к заданным пределам
  volume = map(analogRead(volumePin), MIN, MAX, MIN_FLOWTIME, MAX_FLOWTIME) * 1000; 
  period = map(analogRead(periodPin), MIN, MAX, MIN_PERIOD, MAX_PERIOD) * 1000 * 60 * 60 * 24; 
 
  water();
}

Вот так выглядит конечный результат в работе:

В ближайшем будущем думаю сюда добавить сенсор уровня воды в резервуаре и датчик влажности почвы.

Исходный код программы

В программе нам сначала необходимо подключить библиотеку последовательной связи (SoftwareSerial library) чтобы задействовать последовательную связь на контактах 2 и 3 платы Arduino, а также подключить библиотеку для работы с ЖК дисплеем.

#include<SoftwareSerial.h>SoftwareSerial Serial1(2,3);#include<LiquidCrystal.h>LiquidCrystal lcd(14,15,16,17,18,19);int led=13;int flag=0;String str=»»;#define motor 11#define sensor 7

Затем в функции void setup () последовательная связь инициализируется на скорость 9600 бод/с и задаются режимы работы (на ввод или вывод данных) для используемых контактов. Функция gsmInit вызывается для инициализации GSM модуля.

Serial1.begin(9600);Serial.begin(9600);pinMode(led, OUTPUT);pinMode(motor, OUTPUT);pinMode(sensor, INPUT_PULLUP);lcd.print(«Water Irrigaton»);lcd.setCursor(4,1);delay(2000);lcd.clear();lcd.

Затем в функции void loop () считывается значение с выхода датчика измерения влажности и в зависимости от этого значения включается/выключается мотор водяного насоса и пользователю передаются SMS с помощью функции sendSMS.

void loop(){lcd.setCursor(0,0);lcd.print(«Automatic Mode «);if(digitalRead(sensor)==1 && flag==0){delay(1000);if(digitalRead(sensor)==1){digitalWrite(led, HIGH);sendSMS(«Low Soil Moisture detected.

Какие данные следует принимать во внимание во время настройки датчиков

От правильности настройки программы таймера во многом зависят условия выращивания растений. Что нужно принимать во внимание?

Разбивку территории полива на отдельные зоны с учетом видов культур. Каждая из них имеет свои требования, в некоторых случаях придется покупать многоклапанные таймеры.

Гидравлический расчет по максимальному потреблению воды. Работа таймеров должна учитывать общую емкость накопителей. Если нет автоматической подкачки, то нужно самостоятельно контролировать наличие воды и в случае необходимости заполнять емкости.

Анализ трассировки прокладки систем полива. Большой перепад по высоте отдельных поливных линий может оказывать существенное влияние на их производительность. Во время настройки следует иметь в виду не только время полива, но и количество воды, которое за это время подается растениям.

После завершения монтажа таймера рекомендуется проверить работоспособность системы. Для этого устанавливаются минимальные периоды включения, проверяется правильность срабатывания приводов клапанов. Если таймер работает в нормальном режиме, то можно начинать конкретное программирование и переводить систему в автоматический режим функционирования.

Процесс установки программы таймера намного упростится, если в комплекте с ним приобрести дополнительные датчики.

Простая система автоматического полива | Мастер-класс своими руками
Таймер полива шаровый Green Helper GA-319Простая система автоматического полива | Мастер-класс своими руками
Таймер полива шаровый Green Helper GA-319Простая система автоматического полива | Мастер-класс своими руками

Шаровый электронный таймер Borya 9034992 самотечный

Капельный автополив для комнатных растений

Такие способы можно использовать как поодиночке, так и дополнять с их помощью вышеупомянутую систему общего поддона.

Важно: при таком поливе вода подается цветкам очень дозировано. А так как у всех наших любимцев разные «аппетиты», важно задолго перед отпуском проверить и отрегулировать выбранный вами способ хотя бы на протяжении недели.

  • Фитильный. Этот вариант требует пересадки цветка. Для каждого любимца подготовьте длинный фитиль (шнур, можно взять свернутый трубочкой толстый бинт). Один его конец уложите на дно горшка, свернув кольцами. Посадите в горшок растение, а свисающий конец фитиля опустите в емкость с водой (она должна быть крупнее горшка; если же емкость небольшая, просто поставьте ее повыше — скажем, на ведро). Больше всего этот способ любят фиалки. Кстати, на этом фото вы можете увидеть еще один вариант фитильного полива, с помощью бутылки-поддона. Находчиво, не так ли?
  • Перевернутая бутылка. Способ для больших горшков. Наберите в бутылку воды. Традиционно используют пластиковые, но люди с фантазией применяют даже винные. В крышке проделайте маленькую дырочку (отсюда будет выходить вода), вторую проделайте в днище (сюда будет входить воздух). Можете использовать раскаленный гвоздь. Воткните бутылку в грунт крышечкой вниз. Проверьте, достаточно ли земля пропитывается влагой — может быть, дырочки придется сделать крупнее.
  • Аква глоб (Aqua globes). «Окультуренный» вариант полива с помощью бутылки. В качестве емкости тут выступает покупная колба, которая втыкается в грунт узкой частью. Смешно, но традиционно они похожи на крупную клизму. Впрочем, производители могут порадовать покупателей и более интересной формой, создав поливалку, скажем, в форме птички или улитки. А по факту, это та же бутылка, только для эстетов (и по цене от 3 до 5 долларов за штуку).
  • Полив с помощью конусов. Еще один покупной «бутылочно-фитильный» вид. Вы покупаете керамические конусы, втыкаете по одному в горшок, после чего с помощью тонкой трубки присоединяете конус к емкости с водой. Этот способ помогает даже регулировать подачу воды — чем ниже от емкости вы поставите горшок, тем больше капель будет в него поступать. Цена вопроса: от 1,5 до 15 евро за конус. Самый популярный (хоть и недешевый) производитель таких товаров — Blumart.
  • Гидрогель. Это средство можно использовать разными способами. Идеально: смешать сухие шарики гидрогеля с грунтом, неплотно посадить в него растение, хорошенько полить. Гель вберет много влаги, которую будет пару недель отдавать цветку. Другой способ: замочить гель, а когда он набухнет, присыпать им верх горшка с цветком. А чтобы жидкость не испарялась в воздух, сверху шарики прикройте мхом. А в отдельных случаях вазоны (преимущественно ростки) и вовсе сажают в емкость, наполненную цветными шариками. И красиво, и практично!
  • Капельница. Да-да, обычная аптечная, недорогая — зато со встроенным регулятором, который позволяет точно настроить подачу воды в грунт. Систему можно подключить даже к пятилитровой пластиковой бутылке — главное, чтобы она стояла выше горшков.

Если же вы очень часто в отъездах (скажем, вас постоянно посылают в командировки), или же попросту из-за дел забываете о цветах, купите готовый умный автополив. Предлагаем видеоотчет об одном из них. Он называется «Умная капля» и придуман для длительного использования.

Вот как он выглядит:

Перед отъездом две-три недели или более короткий срок цветоводы-любители переживают: как сохранить комнатные растения от увядания и гибели? Можно купить в агромагазине готовое устройство для наполнения влагой субстрата, но есть и другой, малозатратный вариант.

Что такое автополив

Принцип работы «установки» для автополива – постепенное добавление жидкости из емкости в вазон через отверстия в резервуаре, по «фитилям» либо через дренажные отверстия из влажной основы. По мере подсыхания почвы происходит добавление новой порции жидкости, субстрат всегда в меру увлажненный, корневая система впитывает воду.

В каких случаях необходим автополив для растений в квартире? Полезно иметь системы увлажнения субстрата на время отъезда хозяев, если отсутствие длится более одного-двух дней. Некоторые виды комнатных растений нужно часто поливать, и без достаточного количества влаги цветы быстро погибают.

В период отпуска или путешествий можно попросить хороших соседей или родственников приезжать в жилище, регулярно поливать азалию, комнатную розу, бегонию, фиалки, декабрист, тилландсию, но не всегда этот вариант можно реализовать. Если по какой-либо причине помощник не сможет вовремя приехать, то слишком продолжительный интервал между поливами может погубить цветок. К тому же, не все близкие и знакомые соглашаются тратить время на уход за комнатными растениями в чужом жилище.

Конструкция #1 – таймер с капельницей-фитилем

Волокна фитиля, напитываясь влагой, поднимают ее вверх до определенной высоты, не позволяя воде быстро испаряться. Если фитиль перебросить за борт емкости, то впитавшаяся вода начнет просто капать со свободного конца.

В основе этого способа лежат физические законы, которые создают капиллярный эффект. Он возникает при опускании тканевого фитиля в емкость с водой

Пропускную способность влаги можно отрегулировать, корректируя толщину фитиля, плотность скручивания нитей и пережимая их проволочной петлей.

Для обустройства таймера в емкость с низкими бортами, высота которых не превышает 5-8 см, устанавливают пяти или десятилитровую пластиковую бутылку. Одним из ключевых условий работы системы является поддержание уровня жидкости в емкости на постоянной высоте. Оптимальное соотношение емкостей проще всего определить экспериментальным путем.

Определяющим фактором в его работе выступает водный столб. Поэтому высота бутыля и глубина широкой емкости – взаимосвязанные вещи

В дне бутылки делают небольшое отверстие для вытекания воды. Бутылку наполняют водой, на время прикрыв сливное отверстие, и герметично закрывают крышкой. Наполненную бутылку устанавливают в корытце. Просачивающаяся сквозь донышко вода будет постепенно вытекать, останавливаясь на уровне, когда отверстие не скроется под толщей. По мере расхода воды вытекающая из бутылки вода будет восполнять потери.

Свежие записи

11 серьезных ошибок, которые вы допускаете при выращивании рассады в домашних условиях 7 лучших сортов томатов для открытого грунта, которые принесут вам богатый урожай 5 чудесных ампельных растения, которые украсят ваш сад и не потребуют много хлопот

Сам фитиль проще всего сделать из веревки подходящей толщины или жгута, скрученного из отреза ткани. Его размещают в емкости, правильно распределив концы

Главным преимуществом такого таймера является то, что за счет одинакового уровня воды в широкой емкости в случае дождя восполнение потерь влаги из бутылки будет приостановлено.

Умельцы, уже опробовавшие на практике такое устройство, утверждают, что пятилитровой бутылки при интенсивности подачи в 1 капля/2 секунды хватает на 20 часов бесперебойной работы. Выбрав оптимальный размер бутылки, выполняющей функцию водяного столба, и отрегулировав интенсивность капели, можно добиться эффекта многосуточных задержек.

Конструкция #2 – устройство, регулирующее шаровый кран

В водяном таймере время срабатывания осуществляется под действием капели. Вытекающая из емкости, выполняющей функцию балласта, вода уменьшает вес конструкции. В определенный момент веса емкости уже не хватает на то, чтобы удерживать ручку запорного крана, и подача воды запускается.

Для обустройства водяного таймера потребуется:

  • Бочка для воды;
  • Шаровый кран;
  • Два фанерных или металлических круга;
  • Канистры или 5-литровые пластиковые бутылки;
  • Строительный клей;
  • Катушка швейных ниток.

Для бесперебойного функционирования системы шаровый кран желательно доработать, прикрепив на закрепленную посредством винта ручку небольшой шкив – коромысло. Это позволит приводить кран из закрытого состояния в открытое путем изменения угла наклона ручки.

Шкив сооружают из двух одинаковых фанерных круга, склеивая их плоскостями между собой строительным клеем, либо металлических, соединяя их посредством болтов. На шкив накручивают прочный шнур, для надежности делая вокруг него несколько оборотов. Сооружая рычаг, отрезки шнура прочно фиксируют на его краях.

В качестве грузового балласта и компенсирующей его вес емкости с водой удобно использовать пятилитровые пластиковые бутылки

Регулировать вес емкостей проще всего путем подсыпания песка в одну из них и подливания воды в другую. Роль утяжелителя может выполнить также металлическая крошка или свинцовая дробь.

Емкость с водой и будет выполнять функцию таймера. Для этого в ее донышке тонкой иглой проделывают крошечное отверстие, сквозь которое капля за каплей и будет просачиваться вода. Время вытекания будет зависеть от объемов самой бутылки и размера отверстия. Оно может составлять от нескольких часов до трех-четырех дней.

Чтобы привести устройство в действие, емкость для полива устанавливают на ровной поверхности и заправляют водой. Бутыли, подвешенные за концы шнура к шкиву, также наполняют: одну песком, другую водой. При равноценном весе наполненных бутылок кран закрыт.

По мере выкапывания воды, емкость теряет вес. В определенный момент груз-балласт, перевешивая частично опустошенную бутыль, поворачивает кран в положение «открыто», запуская тем самым полив

Бывают ситуации, когда необходимо получить полное открытие крана, минуя промежуточные положения – так называемый эффект тумблера. В этих случаях поможет маленькая хитрость: в закрытом положении крана к грузику приматывают край нитки, которая будет выполнять функцию предохранителя, а свободный ее конец фиксируют к крану.

При закрытом положении механизма нить не будет испытывать никакой нагрузки. По мере опустошения емкости с водой груз станет перевешивать, но предохранительная нить примет на себя лишний вес, не позволив балласту перевести кран в положение «открыто».

Чтобы привести систему в исходное состояние достаточно просто снять груз или зафиксировать его в подвешенном состоянии, устранив натяжение шнура.

Система готова к эксплуатации, остается только перед отъездом наполнить поливочную бочку и таймер водой и подвесить балласт, подстраховав его тоненькой ниткой. Такое устройство просто в изготовление и удобно в обслуживании. Единственным его недостатком можно считать однократность срабатывания.

Другие идеи по созданию механических таймеров можно почерпнуть на тематических формах. К примеру, в качестве рабочего органа таймера некоторые умельцы используют цилиндрический плунжер с полиэтиленовыми гранулами в масле. Устройство настраивают так, чтобы при понижении температуры в ночное время вытеснитель втягивался, а ослабленная пружина открывала кран.

Логика и силовая часть. разделение

Уже на первых порах, при работе с шаровыми клапанами, иногда случались проблемы в виде зависаний контроллера. С внедрением мембранного насоса стало наглядным влияние наводок от мощных нагрузок на работу логики. Тогда у меня ещё не было осциллографа, чтобы увидеть это воочию. Но частота зависаний и сбоев стала невыносимой. То о чём я только читал, подозревал и предполагал, стало закономерным.

Итак, было решено сделать отдельно контроллер, где будет работать логика устройства вкупе с частью измерительных приборов и, отдельно, систему управления силовой частью – насосами, дозаторами удобрений, клапанами. Силовую систему предполагалось сделать модульной, расширяемой.

Чтобы если понадобится изменить количество исполнительных компонентов в аппарате, можно было бы их добавлять/убавлять без переделки схемотехники. Дабы исключить проникновение электрических помех из силовой части в логику, была задумана гальваническая изоляция.

Покумекав над требованиями, набросал первую версию силового модуля и новый контроллер.В первой версии силового модуля для управления нагрузками была неудачно выбрана микросхема L293. Неудачной она оказалась потому, что в её составе использованы биполярные ключи.

Это даёт немалое собственное потребление (и, соответственно, тепловыделение) микросхемы в моменты работы нагрузок. Радиаторы, установленные на микросхемах работали на пределе. В следующем варианте схемы были выбраны драйверы L6205PD. Они выполнены на полевых транзисторах и грелись уже существенно меньше.

При этом, позволяли нагружать на каждый канал значительно больше тока. Кроме того, корпус микросхем с окончанием PD в названии микросхемы имеет хорошее теплоотводящее основание, которое позволяет отводить тепло прямо в плату. В результате, в дизайн платы были заложены приличные площади меди как раз для этой функции.

Испытания показали удовлетворительные результаты, без использования дополнительных радиаторов, в условиях пассивного охлаждения. Следует заметить, что крепилась плата управления нагрузками внутри пластикового короба, вместе с основным контроллером и Raspberry Pi.

Поскольку разделение силовой и логической частей делалось ради снижения влияния помех от мощных нагрузок на логику, то здесь была применена гальваническая развязка. Выполнена она была на ADUM1250. Соответственно, на плате силового драйвера был поставлен I2C-декодер (экспандер) – MCP23017.

Рядом с ADUM разместилась сдвоенная оптопара, которая одним каналом делала декодеру сброс и вторым каналом включала/выключала питание на микросхемы драйверов через мощный полевой транзистор. Для питания MCP23017 изначально использовался MINI360, который впоследствии был заменен на LM317.

Схема драйвера может работать начиная с около 10 вольт и выше. Потолок не проверял, но оценочно можно смело утверждать 24В, может 36В (теоретически, это разумный предел для LM317). Для L6205 заявлены вообще 50В. На практике вся система проверялась в работе на 12В.

На 4 микросхемы L6205, установленных на одной плате, получается 16 каналов управления для исполнительны устройств. Модульность позволяет подключать несколько плат. Для этого необходимо задать разные I2C адреса для MCP23017 при помощи трёх резисторов, предусмотренных на плате.

Одиночные L6205 каналы можно сдваивать (согласно аппноту), чтобы получить больше пропускной способности. Именно так и были запитаны чёрные клапаны (наиболее прожорливые), на минимальной конфигурации системы полива, где одной платы управления нагрузками хватает в самый раз.

Что касается основного контроллера, то его крепежные отверстия были расположены так, чтобы можно было механически и электрически соединить его сразу с силовым драйвером, расположив один над другим, с расстоянием между плат в пару сантиметров. Были сомнения, относительно электромагнитных наводок с одной платы на другую, по воздуху.

На основной, системный насос, поскольку он имеет приличную инерцию и мощность, в паре-другой сантиметров от мотора был поставлен ультрабыстрый диод в обратной полярности, чтобы гасить обратное напряжение (fly back diode). Насос, ввиду хорошего потребляемого тока, был запитан не напрямую в силовой драйвер, а через полевой транзистор, затвор которого уже подключен к силовому драйверу.

На клапанах и дозаторах, подключенных напрямую к L6205PD силового драйвера проводились эксперименты с быстрым (десятки раз в секунду) включением и выключением, без обратных диодов. Ничего не погорело, несмотря на опасения (особенно по части соленоидов клапанов).

Многоканальная система автополива на arduino |

Версия 1.*

Система управляет количеством помп PUPM_AMOUNT, подключенных подряд в пины платы, начиная с пина START_PIN. На каждую помпу заводится таймер, который включает помпу на заданное время через заданные промежутки времени. Промежутки времени (период работы) может быть в часах или минутах (настройка PERIOD). Время работы помпы может быть в минутах или секундах (настройка PUMPING). Включение производится сигналом уровня SWITCH_LEVEL. 0 – для реле низкого уровня (0 Вольт, все семейные модули реле), 1 – высокого уровня (5 Вольт, редкие модули реле, все мосфеты).

Примечание: катушка реле кушает около 60 мА, несколько включенных вместе катушек создадут лишнюю нагрузку на линию питания. Также несколько включенных одновременно помп сделают то же самое. Для устранения этого эффекта есть настройка PARALLEL. При её отключении помпы будут “вставать в очередь”, совместное включение будет исключено.Управление:

  • Нажатие на ручку энкодера – переключение выбора помпы/периода/времени работы
  • Поворот ручки энкодера – изменение значения
  • Кнопка энкодера удерживается при включении системы – сброс настроек

Версия 2.*
ПЕРЕД ПРОШИВКОЙ ВТОРОЙ ВЕРСИИ ЗАМЕНИТЕ ВСЕ БИБЛИОТЕКИ НОВЫМИ (ИДУТ В АРХИВЕ ПРОЕКТА, В ПАПКЕ НОВАЯ ВЕРСИЯ)!!!!
Поворачивая рукоятку энкодера мы перемещаем стрелочку выбора по экрану. Обратите внимание на то, что настройка времени работы помпы находится правее «за экраном», нужно пролистать стрелочку направо чтобы её активировать. Чтобы изменить выбранный стрелочкой параметр, нужно повернуть рукоятку энкодера, удерживая её нажатой. Таким образом можно настроить время периода и работы помпы в формате ЧЧ:ММ:СС. Логика работы настроек PUPM_AMOUNT, START_PIN, SWITCH_LEVEL и PARALLEL такая же как для версии 1.*

  • Поворот ручки энкодера – изменение позиции стрелки
  • Поворот ручки энкодера удерживая её нажатой – изменение значения
  • Кнопка энкодера удерживается при включении системы – сброс настроек

Опять ec

Отсутствие развязки по EC модулю на таймере 555 не давали спать спокойно. Кроме того, вода проникала в под эпоксидку и иногда достигала встроенного датчика DS18B20. Это приводило к печальным последствиям в виде ржавчины и почернения проводов датчика температуры. Иногда металл позолоченных пинов съедался вовсе. Помогала их лакировка.

Тем не менее, к тому времени в загашниках уже имелся модуль EVAL-0349.

EVAL-0349 от Analog
EVAL-0349 от Analog

В испытаниях он неплохо себя зарекомендовал. Присутствует изоляция питания и сигнала, достаточная точность измерений, помимо входа для сенсора EC есть и вход для резистивного термодатчика. Но не очень нравилось то, что он в виде отдельного модуля.

В очередной итерации схемы и платы контроллера был заменен блок измерения EC со старого (с таймером 555) на примерно тот, который предлагался в EVAL-0349. Добавлена та же ADUM1250 для изоляции сигнала, 0505 по питанию и показания электропроводности воды вместе с её температурой стали электрически отделены от контроллера. Вместе с этим были испробованы относительно дешевые сенсоры EC из Китая. За два цикла испытаний нареканий не обнаружено.

По ходу дела был также обнаружен весьма экзотический способ измерения солей в воде — индуктивный. Это когда наматывается катушка, изолированная от воды, а в роли сердечника выступает измеряемая вода. Индуктивность получившейся системы, очевидно, зависит от электропроводности воды-сердечника.

Таким образом осуществляется измерение. Такие сенсоры обладают повышенной (в сравнении с традиционными, контактными) долговечностью. На али был обнаружен карманный экземпляр за 70 долларов, однако пределы измерений и точность годятся для морской воды, нежели слабых растворов, применяемых в растениеводстве. Мои мимолётные эксперименты намотать катушку на трубу с водой пока не дали положительных результатов.

Системы капельного полива для комнатных растений

Представляем вашему вниманию варианты систем капельного полива для домашних цветов.

1.КАПИЛЛЯРНЫЙ МАТ ДЛЯ ПОДДОННОГО ПОЛИВА

Это специальное покрытие из гигроскопичного материала размещают в любом удобном ровном месте, а под него подстилают садовую пленку. Край капиллярного мата или надрезанную его полосу смачивают водой и опускают в емкость с жидкостью.

  • Для использования в домашних условиях не покупайте капиллярный геотекстиль, его производят из вторсырья.

КАПИЛЛЯРНЫЙ МАТ ЦЕНА: около 3 евро за погонный метр рулона шириной в 100 см.

к примеру, Vivapol (Германия) с защитным покрытием Aquafol и влагоемкостью три литра на м2.

Ширина рулонов различная: 100, 125, 150 или 200 см, цвет черный или белый.

2.ПОДДОН ДЛЯ ПОЛИВА ИЗ КАПИЛЛЯРНЫХ МАТОВ

Данное устройство автоматического полива состоит из трех частей: капиллярный ковер, внешний и внутренний поддон.

Внутренний поддон покрыт капиллярным ковром, сверху которого размещают горшок с растением. Внутренний поддон ставят во внешний, в который наливают воду. Ковер впитывает воду и передает ее растению.

  • Подобные конструкции производят многие фирмы (Garland (Англия) и другие), которые заверяют, что растение проживет в автономном режиме до двух недель.

ЦЕНАGARLAND: цена на амазоне 7-8 евро за поддон с размерами (55 см – длина, 31 см – ширина, 3 см – высота) и емкостью в 1,8 литра воды из экологически чистых материалов.

3.УСТРОЙСТВА ПО ТИПУ AQUA GLOBES

Большое распространение получают устройства по типу aqua globes (watering tubes, glass watering sphere и т.д.

): стеклянная колба с керамическим конусом.

Конструкцию помещают в почвенную смесь, где она за счет капиллярно-пористой структуры равномерно увлажняет субстрат.

Aqua globes — один из вариантов.

ЦЕНА AQUA GLOBES: на амазоне 10-12 долларов за 2 штуки, на территории СНГ в магазинах можно найти по цене около трех долларов за штуку.

  • СОВЕТ: если нет потребности в красивом внешнем виде, то устройство из пластиковой бутылки будет поливать не особо хуже, зато бесплатно.

4. КЕРАМИЧЕСКИЕ КОНУСЫ ДЛЯ ПОЛИВА РАСТЕНИЙ

Керамические конусы могут продаваться отдельно без емкости для воды (например, Blumat Tube Automatic Plant Waterer), а влага в них поступают через тонкий шланг из емкости с водой.

Нижняя часть конуса изготовлена из специальной глины, которая анализирует влажность почвы и отдает влагу после достаточного просыхания.

С помощью изменения высоты горшка с растением, по отношению к емкости с водой, можно регулировать количество поступаемой влаги.

Система для полива �Blumat�

ЦЕНА НАБОРА BLUMAT: на амазоне 12-15 евро. Отдельно конус неизвестного производителя на территории СНГ можно приобрести примерно по 1,5 доллара за штуку.

5.УМНЫЙ ГОРШОК ДЛЯ ЦВЕТОВ С АВТОПОЛИВОМ

Схема

Предлагаю к сборке схему простого и проверенного датчика влажности почвы, схема которого изображена ниже:

В почку горшка опускаются два металлических прутка, сделать которые можно, например, разогнув скрепку. Их нужно воткнуть в землю на расстоянии примерно 2-3 сантиметра друг от друга. Когда почва сухая, она плохо проводит электрический ток, сопротивление между прутками очень велико.

Резистор 10 кОм и участок почвы между прутками образуют делитель напряжения, выход которого соединён с инвертирующим входом операционного усилителя. Т.е. напряжение на нём зависит лишь от того, насколько увлажнена почва. Если поместить датчик во влажную почву, то напряжение на входе ОУ будет равно примерно 2-3 вольтам.

По мере высыхания земли это напряжение будет увеличиваться и достигнет значения 9-10 вольт при совершенно сухой земле (конкретные значения напряжения зависят от типа почвы). Напряжение на неинвертирующем входе ОУ задаётся вручную переменным резистором (10 кОм на схеме, его номинал можно менять в пределах 10-100 кОм) в пределах от 0 до 12-ти вольт.

С помощью этого переменного резистора задаётся порог срабатывания датчика. Операционный усилитель в этой схеме работает в качестве компаратора, т.е. он сравнивает напряжения на инвертирующем и неинвертирующем входах. Как только напряжение с инвертирующего входа превысит напряжение с неинвертирующего, на выходе ОУ появится минус питания, загорится светодиод и откроется транзистор.

Печатная плата, предлагающаяся к статье, рассчитана на использования сдвоенного операционного усилителя, например, TL072, RC4558, NE5532 или других аналогов, одна его половинка при этом не используется. Транзистор в схеме используется малой или средней мощности и структуры PNP, можно применить, например, КТ814.

Оцените статью
Дачный мир
Добавить комментарий